skip to main content


Search for: All records

Creators/Authors contains: "Zhao, Chun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Elastomers generally possess low Young's modulus and high failure strain, which are widely used in soft robots and intelligent actuators. However, elastomers generally lack diverse functionalities, such as stimulated shape morphing, and a general strategy to implement these functionalities into elastomers is still challenging. Here, a microfluidic 3D droplet printing platform is developed to design composite elastomers architected with arrays of functional droplets. Functional droplets with controlled size, composition, position, and pattern are designed and implemented in the composite elastomers, imparting functional performances to the systems. The composited elastomers are sensitive to stimuli, such as solvent, temperature, and light, and are able to demonstrate multishape (bow‐ and S‐shaped), multimode (gradual and sudden), and multistep (one‐ and two‐step) deformations. Based on the unique properties of droplet‐embedded composite elastomers, a variety of stimuli‐responsive systems are developed, including designable numbers, biomimetic flowers, and soft robots, and a series of functional performances are achieved, presenting a facile platform to impart diverse functionalities into composite elastomers by microfluidic 3D droplet printing.

     
    more » « less
  2. Abstract. Mineral dust is the most abundant aerosol species by massin the atmosphere, and it impacts global climate, biogeochemistry, and humanhealth. Understanding these varied impacts on the Earth system requiresaccurate knowledge of dust abundance, size, and optical properties, and howthey vary in space and time. However, current global models show substantialbiases against measurements of these dust properties. For instance, recentstudies suggest that atmospheric dust is substantially coarser and moreaspherical than accounted for in models, leading to persistent biases inmodelled impacts of dust on the Earth system. Here, we facilitate moreaccurate constraints on dust impacts by developing a new dataset: DustConstraints from joint Observational-Modelling-experiMental analysis(DustCOMM). This dataset combines an ensemble of global model simulationswith observational and experimental constraints on dust size distributionand shape to obtain more accurate constraints on three-dimensional (3-D)atmospheric dust properties than is possible from global model simulationsalone. Specifically, we present annual and seasonal climatologies of the 3-Ddust size distribution, 3-D dust mass extinction efficiency at 550 nm, andtwo-dimensional (2-D) atmospheric dust loading. Comparisons with independentmeasurements taken over several locations, heights, and seasons show thatDustCOMM estimates consistently outperform conventional global modelsimulations. In particular, DustCOMM achieves a substantial reduction in thebias relative to measured dust size distributions in the 0.5–20 µmdiameter range. Furthermore, DustCOMM reproduces measurements of dust massextinction efficiency to almost within the experimental uncertainties,whereas global models generally overestimate the mass extinction efficiency.DustCOMM thus provides more accurate constraints on 3-D dust properties, andas such can be used to improve global models or serve as an alternative toglobal model simulations in constraining dust impacts on the Earth system. 
    more » « less
  3. Abstract

    Nanoparticles with diverse structures and unique properties have attracted increasing attention for their widespread applications. Co‐precipitation under rapid mixing is an effective method to obtained biocompatible nanoparticles and diverse particle carriers are achieved by controlled phase separation via interfacial tensions. In this Minireview, we summarize the underlying mechanism of co‐precipitation and show that rapid mixing is important to ensure co‐precipitation. In the binary polymer system, the particles can form four different morphologies, including occluded particle, core‐shell capsule, dimer particle, and heteroaggregate, and we demonstrate that the final morphology could be controlled by surface tensions through surfactant, polymer composition, molecular weight, and temperature. The applications of occluded particles, core‐shell capsules and dimer particles prepared by co‐precipitation or microfluidics upon the regulation of interfacial tensions are discussed in detail, and show great potential in the areas of functional materials, colloidal surfactants, drug delivery, nanomedicine, bio‐imaging, displays, and cargo encapsulation.

     
    more » « less
  4. Abstract

    Co‐precipitation is generally refers to the co‐precipitation of two solids and is widely used to prepare active‐loaded nanoparticles. Here, it is demonstrated that liquid and solid can precipitate simultaneously to produce hierarchical core–shell nanocapsules that encapsulate an oil core in a polymer shell. During the co‐precipitation process, the polymer preferentially deposits at the oil/water interface, wetting both the oil and water phases; the behavior is determined by the spreading coefficients and driven by the energy minimization. The technique is applicable to directly encapsulate various oil actives and avoid the use of toxic solvent or surfactant during the preparation process. The obtained core–shell nanocapsules harness the advantage of biocompatibility, precise control over the shell thickness, high loading capacity, high encapsulation efficiency, good dispersity in water, and improved stability against oxidation. The applications of the nanocapsules as delivery vehicles are demonstrated by the excellent performances of natural colorant and anti‐cancer drug‐loaded nanocapsules. The core–shell nanocapsules with a controlled hierarchical structure are, therefore, ideal carriers for practical applications in food, cosmetics, and drug delivery.

     
    more » « less